On non-signalling quantum boxes

Marco Piani
Institute of Theoretical Physics and Astrophysics
University of Gdansk

Work in collaboration with:
Michal Horodecki, Ryszard Horodecki

Institute of Theoretical Physics and Astrophysics, University of Gdansk

Pawel Horodecki

Faculty of Applied Physics and Mathematics, Technical University of Gdansk

ISSQUI05, Dresden, August 29 -September 302005

Motivation

- Understand better the relation between locality and causality
- Investigate the non-local features of quantum mechanics
- Analyze the communication needed to perform a bipartite quantum operation and allowed by it

Non-locality \& causality

- Testing and evaluating non-locality

$$
\begin{aligned}
& \quad A_{0}, A_{1}, B_{0}, B_{1} \quad \text { Dichotomic experiments: } \pm 1 \\
& \\
& \langle\text { Bell }\rangle=\left\langle A_{0} B_{0}\right\rangle+\left\langle A_{0} B_{1}\right\rangle+\left\langle A_{1} B_{0}\right\rangle-\left\langle A_{1} B_{1}\right\rangle \\
& \langle\text { Bell }\rangle \quad \leqslant 2 \quad \text { LHV models } \quad p_{\lambda}(a, b \mid A, B)=p_{\lambda}(a \mid A) p_{\lambda}(b \mid B) \\
& \leqslant 2 \sqrt{2} \quad \text { quantum mechanics } \quad\langle A B\rangle=\operatorname{Tr}(\rho A B) \\
& \leqslant 4 \quad
\end{aligned}
$$

- Quantum mechanics is non-local (even if "non-maximally") but respects causality (no-signalling): statistics of local measurments determined by reduced state

$$
\left|\psi_{A B}^{0}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|00_{A B}\right\rangle+\left|11_{A B}\right\rangle\right) \quad \rightarrow \quad \rho_{A}=\rho_{B}=\frac{1}{2}
$$

Maximal (quantum) correlation, non-locality but no superluminal signalling

(Classical) boxes

Example (Popescu-Rohrlich box):
$a, b, x, y \in\{0,1\}$
a, b locally random but correlated: $a \oplus b=x \cdot y$ defining $\quad a_{0,1}=a_{x=0,1} \quad A_{0,1}=(-1)^{a_{0,1}}$

$$
b_{0,1}=b_{y=0,1} \quad B_{0,1}=(-1)^{b_{0,1}}
$$

we have $\left\langle A_{0} B_{0}\right\rangle=\left\langle(-1)^{a_{0} \oplus b_{0}}\right\rangle\left\langle(-1)^{0}\right\rangle=1 \quad$ etc.
so that $\quad\langle$ Bell $\rangle=4$
Maximal violation of non-locality but still preservation of causality

"Quantization" of the classical PR box

- Coherent version (using entangled ancilla)

$$
\begin{array}{ll}
\rho_{A B}^{\prime}=\Lambda^{E}\left[\rho_{A B}\right]=(1-p) P_{0}+p P_{1} & p=\langle 11| \rho_{A B}|11\rangle \\
P_{i}=\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \quad\left|\psi_{0}\right\rangle=\frac{|00\rangle+|11\rangle}{\sqrt{2}} & \left|\psi_{1}\right\rangle=\frac{|01\rangle+|10\rangle}{\sqrt{2}} \\
\text { input } \quad\left|\phi_{A B}\right\rangle \begin{array}{ll}
A & A \\
B & \bullet \\
A^{\prime} \times & \bullet \\
B^{\prime} & \oplus
\end{array} & B
\end{array}
$$

- Action on the computational basis

$$
\begin{array}{cc}
|00\rangle,|01\rangle,|10\rangle & \rightarrow\left|\psi_{0}\right\rangle
\end{array} \underset{\substack{ \\
\underset{\sim}{\text { input }}}}{\text { local }} \quad \begin{gathered}
a \oplus b=x \cdot y \\
\text { weasurements: } \\
\text { output } a, b
\end{gathered} \quad \rho_{A}^{\prime}{ }_{A}=\rho^{\prime}{ }_{B}=\frac{1}{2}
$$

- Incoherent version (using correlated but separable ancillae)

$$
\begin{gathered}
\Lambda^{S}\left[\rho_{A B}\right]=(1-p) Q_{0}+p Q_{1} \quad p=\langle 11| \rho_{A B}|11\rangle \\
Q_{0}=\frac{|00\rangle\langle 00|+|11\rangle\langle 11|}{2} \quad Q_{1}=\frac{|01\rangle\langle 01|+|10\rangle\langle 10|}{2}
\end{gathered}
$$

- For both versions we can define a family of maps

$$
\begin{aligned}
& \quad \Lambda_{\alpha}^{E}\left[\rho_{A B}\right]=(1-\alpha) P_{0}+\alpha \Lambda^{E}\left[\rho_{A B}\right] \quad 0 \leqslant \alpha \leqslant 1 \\
& \quad \Lambda_{\alpha}^{S}\left[\rho_{A B}\right]=(1-\alpha) Q_{0}+\alpha \Lambda^{S}\left[\rho_{A B}\right] \\
& \alpha=0 \quad \text { constant map } \\
& \alpha=1 \quad \text { maximal standard quantum non-locality } \\
& \text { "original" map } \Lambda^{E, S} \quad \text { (maximal non-locality...) }
\end{aligned}
$$

- To perform a map $\Lambda_{\alpha}^{E, S}$ we need at most α times the communication needed for $\Lambda^{E, S}$

"Experimental" procedure to test non-locality

$$
\langle\text { Bell }\rangle=\left\langle A_{0} B_{0}\right\rangle+\left\langle A_{0} B_{1}\right\rangle+\left\langle A_{1} B_{0}\right\rangle-\left\langle A_{1} B_{1}\right\rangle
$$

Dichotomic experiments $\quad A_{i} \equiv\left(|i\rangle, \vec{a}_{i} \cdot \vec{\sigma}\right) \quad B_{j} \equiv\left(|j\rangle, \vec{b}_{j} \cdot \vec{\sigma}\right)$
with

$$
\left\langle A_{i} B_{j}\right\rangle=\operatorname{Tr}\left(\frac{\Lambda \frac{\Lambda| \rangle_{A}\langle i| \otimes|j\rangle_{B}\langle j|}{\text { input state }}}{\text { output state }}\left(\vec{a}_{i} \cdot \vec{\sigma} \otimes \vec{b}_{j} \cdot \vec{\sigma}\right)\right)
$$

The quantum state with respect to which the observables are measured depends on the observables themselves!

Parameters for maximal \langle Bell \rangle

$$
\Lambda_{\alpha}^{E} \quad \Lambda_{\alpha}^{S}
$$

$$
\vec{a}_{1}
$$

$$
\vec{a}_{0} \equiv \vec{a}_{1} \equiv \vec{b}_{0} \equiv \vec{b}_{1}
$$

- For $\Lambda_{\alpha}^{E}: \quad\langle$ Bell $\rangle=\left\{\begin{array}{ll}\sqrt{\frac{(2-\alpha)^{3}}{1-\alpha}}+\alpha & 0 \leq \alpha \leq 2 / 3 \\ 2(1+\alpha) & 2 / 3<\alpha \leq 1\end{array}\right\}$
- For $\Lambda_{\alpha}^{S}:\langle$ Bell $\rangle=2(1+\alpha) \quad 0 \leq \alpha \leq 1$

Entanglement seems not to help to obtain maximal non-locality

Non-signalling maps

DEF We say that a bipartite operation is non-signalling (or causal) if it can not be exploited to send information from one party to the other
D. Beckman et al., Phys. Rev. A 64, 052309 (2001)

$$
\begin{gathered}
\rho_{B}^{\prime}=\operatorname{Tr}_{A}\left(\Lambda_{A B}\left[\rho_{A B}\right]\right) \equiv \operatorname{Tr}_{A}\left(\Lambda_{A B}\left[\left(\Gamma_{A} \otimes 1_{B}\right)\left[\rho_{A B}\right]\right]\right) \\
\forall \Gamma_{A}, \forall \rho_{A B} \in S_{A B}
\end{gathered}
$$

- Alice can not send a signal to Bob using $\Lambda_{A B}$ iff

$$
\left(D_{A} \otimes i d_{B}\right) \circ \Lambda_{A B} \circ\left(D_{A} \otimes i d_{B}\right)=\left(D_{A} \otimes i d_{B}\right) \circ \Lambda_{A B}
$$

with $D_{A}[X]=\operatorname{Tr}(X) \frac{1}{d_{A}}$ the totally depolarizing channel

- Defining equivalence classes of states with same reductions

$$
\left[\left[\rho_{A B}\right]\right]_{A B}=\left\{\sigma_{A B} \mid \sigma_{A}=\rho_{A} \wedge \sigma_{B}=\rho_{B}\right\} \equiv\left[\left[\rho_{A} \otimes \rho_{B}\right]\right]_{A B}
$$

$\Lambda_{A B}$ is causal iff $\Lambda_{A B}\left(\left[\left[\rho_{A B}\right]\right]_{A B}\right) \subseteq\left[\left[\Lambda_{A B}\left(\rho_{A B}\right)\right]\right]_{A B}$
$S_{A B} \quad S_{A B}$

- For causal maps we can define reduced maps and equivalence classes of maps with the same reductions

$$
\left[\left[\Lambda_{A} \otimes \Lambda_{B}\right]\right]_{A B} \equiv\left\{\Gamma_{A B} \mid \Gamma_{A}=\Lambda_{A} \wedge \Gamma_{B}=\Lambda_{B}\right\}
$$

"Implicit" definition of causal maps

- Consider:

$$
\begin{aligned}
\left\{\rho_{i}^{A}\right\}_{i=1}^{d_{A}^{2}},\left\{\rho_{j}^{B}\right\}_{j=1}^{d_{B}^{2}} & \text { bases for } S_{A}, \\
\Lambda_{A}: S_{A} \rightarrow S_{A} & \text { local operations }
\end{aligned}
$$

- We define implicitly a bipartite causal operation $\Lambda_{A B}: S_{A B} \rightarrow S_{A B}$

$$
\Lambda_{A B}\left[\rho_{i}^{A} \otimes \rho_{j}^{B}\right] \equiv \rho_{i j}^{\prime A B} \in\left[\left[\Lambda_{A}\left(\rho_{i}^{A}\right) \otimes \Lambda_{B}\left(\rho_{j}^{B}\right)\right]\right]_{A B}
$$

- Varying $\rho_{i j}^{\prime A B}$ we obtain all possible causal maps in the equivalence class $\left[\left[\Lambda_{A} \otimes \Lambda_{B}\right]\right]_{A B} \equiv\left\{\Gamma_{A B} \mid \Gamma_{A}=\Lambda_{A} \wedge \Gamma_{B}=\Lambda_{B}\right\}$

WARNING: we must check/impose complete positivity!!!

- Classification of causal maps is related to classification of states with the same local reductions

Communication "cost" and "distillable"

 communication of bipartite maps- Given local operations and entanglement as free resources, what is the (classical) communication needed to perform a map?
- What is the (classical) communication allowed by a map?
(A. M. Childs et al., quant-ph/0506039)

Two-way channel \rightarrow Two rates: $R_{A \rightarrow B}, R_{B \rightarrow A}$

- Maps which require communication (non-localizable) but do not allow it (causal) imply non-reversibility,
i.e. bound communication
- Is it possible to recover reversibility allowing as a free resource some standard class of causal maps?

Conclusions

- There are bipartite quantum operations which require communication to be performed (non-localizable) but do not allow it (causal)
- The non-locality exhibited by such operations is due only partially to entanglement; bound communication is important as well
- It is possible to define and study communication cost and distillable communication of maps; is there reversibility under the assumption of having for free some causal map?

REFERENCES:

- D. Beckman, D. Gottesman, M. A. Nielsen, and J. Preskill, Phys. Rev. A 64, 052309 (2001).
- T. Eggeling, D. M. Schlingemann, and R. F. Werner, Europhys. Lett. 57, 782 (2001).
- M. P., M. Horodecki, P. Horodecki, R. Horodecki, quant-ph/0505110

